Free cookie consent management tool by TermsFeed Finding the eigenvalues and eigenvectors of a matrix | Pythontic.com

Finding the eigenvalues and eigenvectors of a matrix

Overview:

  • The function eig() from the linalg module of NumPy library computes the eigenvalues and eigenvectors of a given square matrix.

Example:

# Example Python program that finds the eigenvectors and eigenvalues
# of a given square matrix using the function eig() of linalg module from
# the NumPy library
import numpy

# Printing format of floating point numbers
numpy.set_printoptions(suppress=True, formatter={'float_kind':'{:0.2f}'.format}) 

# Generate matrix elements
elems = numpy.arange(-15, 16, 2)

# Create matrix
matrix  = elems.reshape(4, 4)
print("A 4x4 matrix:")
print(matrix)

# Find the eigen values and eigen vectors of the matrix
results = numpy.linalg.eig(matrix)

print("Eigenvalues:")
print(results.eigenvalues)

print("Eigenvectors:")
print(results.eigenvectors)

Output:

A 4x4 matrix:

[[-15 -13 -11  -9]

 [ -7  -5  -3  -1]

 [  1   3   5   7]

 [  9  11  13  15]]

Eigenvalues:

[-17.89 0.00 17.89 -0.00]

Eigenvectors:

[[0.82 0.55 0.38 -0.43]

 [0.42 -0.73 -0.02 0.83]

 [0.02 -0.18 -0.42 -0.35]

 [-0.38 0.37 -0.82 -0.04]]

 


Copyright 2025 © pythontic.com