Applying Inverse Fourier Transform In Python Using Numpy.fft

Overview:

  • While the Discrete Time Fourier Transform transforms a signal from time domainto frequency domain, the inverse Discrete Time Fourier Transform takes the representation of the signal back to the time domain.
  • The inverse of Discrete Time Fourier Transform - DTFT is called as the inverse DTFT.
  • The Python module numpy.fft has a function ifft() which does the inverse transformation of the DTFT. 
  • The Python example uses a sine wave with multiple frequencies 1 Hertz, 2 Hertz and 4 Hertz. The signal is plotted using the numpy.fft.ifft() function.  

Example:

import numpy as np

import matplotlib.pyplot as plt

 

# Time period

t = np.arange(0, 10, 0.01);

 

# Create a sine wave with multiple frequencies(1 Hz, 2 Hz and 4 Hz)

a = np.sin(2*np.pi*t) + np.sin(2*2*np.pi*t) + np.sin(4*2*np.pi*t);

 

# Do a Fourier transform on the signal

tx  = np.fft.fft(a);

 

# Do an inverse Fourier transform on the signal

itx = np.fft.ifft(tx);

 

# Plot the original sine wave using inverse Fourier transform

plt.plot(t, a);

plt.title("Sine wave plotted using inverse Fourier transform");

plt.xlabel('Time')

plt.ylabel('Amplitude')

plt.grid(True)

 

plt.show();

 

Output:

Sine wave plotted using the Inverse Fourier Transform

 


Copyright 2024 © pythontic.com