Free cookie consent management tool by TermsFeed Find Mean Absolute Deviation using mad() function in pandas | Pythontic.com

Find Mean Absolute Deviation using mad() function in pandas

Overview:

  • Mean Absolute Deviation (MAD) is computed as the mean of absolute deviation of data points from their mean.
  • pandas DataFrame class has the method mad() that computes the Mean Absolute Deviation for rows or columns of a pandas DataFrame object.
  • When mad() is invoked with axis = 0, the Mean Absolute Deviation is calculated for the columns. When axis=1, MAD is calculated for the rows.
  • NaN values can be skipped using the optional Boolean parameter skipna. skipna=True skips the NaN values. skipna=False includes the NaN values. The default value for skipna is True.

Example 1:

import pandas as pd

 

dataSet = {"C1":(6.5, 5.1, 5.6, 7.0, 7.1, 7.45, 7.75, 8),

           "C2":(7, 7.1, 7.2, 6, 6.1, 6.3, 5.1, 5.2)

          }

dataFrame = pd.DataFrame(data=dataSet);

print("DataFrame:");

print(dataFrame)

 

# Calculate Mean Absolute Deviation of DataFrame columns

mad = dataFrame.mad();

print("Mean absolute deviation of columns:");

print(mad);

 

# Calculate Mean Absolute Deviation of DataFrame rows

mad = dataFrame.mad(axis=1);

print("Mean absolute deviation of rows:");

print(mad);

 

Output:

Calculating mean absolute deviation for the rows and columns of a pandas dataframe object

 

Example 2:

import pandas as pd

 

dataValues = [(2,  3,   5, 7,),

              (11, 13, 17, 19),

              (23, 29, None, None),

              (31, 37, None, None)]

             

dataFrameOject = pd.DataFrame(data=dataValues);

print("DataFrame:");

print(dataFrameOject)

 

# Calculate MAD for the DataFrame columns

mad = dataFrameOject.mad(axis=0);

print("Mean absolute deviation of columns(NaNs skipped):");

print(mad);

 

# Calculate MAD for the DataFrame columns

mad = dataFrameOject.mad(axis=0, skipna=False);

print("Mean absolute deviation of columns(NaNs included):");

print(mad);

 

# Calculate MAD for the DataFrame rows

mad = dataFrameOject.mad(axis=1);

print("Mean absolute deviation of rows(NaNs skipped):");

print(mad);

 

# Calculate MAD for the DataFrame rows

mad = dataFrameOject.mad(axis=1, skipna=False);

print("Mean absolute deviation of rows(NaNs included):");

print(mad);

 

Output:

MAD calculated for a pandas DataFrame with values given for skipna parameter

 


Copyright 2025 © pythontic.com