Method name:
sin(aRadians_in)
Method overview:
The python, math.sin() function returns the ratio of opposite side to the hypotenuse, for the given radian value.
Parameters:
aRadians_in : Radians for which the sin θ value needs to be found
Return value:
The sin θ value for the given radians value is returned.
Example:
# Find sin θ value for common anglesimport math
# sin θ value for zero degrees Radians0 = math.radians(0) sin0 = math.sin(Radians0) sin0Rounded = round(sin0,2)
# sin 30 value for zero degrees Radians30 = math.radians(30) sin30 = math.sin(Radians30) sin30Rounded = round(sin30,2)
# sin 45 value for zero degrees Radians45 = math.radians(45) sin45 = math.sin(Radians45) sin45Rounded = round(sin45,2)
# sin 60 value for zero degrees Radians60 = math.radians(60) sin60 = math.sin(Radians60) sin60Rounded = round(sin60,2)
# sin 90 value for zero degrees Radians90 = math.radians(90) sin90 = math.sin(Radians90) sin90Rounded = round(sin90,2)
# Sin(degrees) : Python Example: Printing values for common angles print("Sin0:{}".format(sin0Rounded)) print("Sin30:{}".format(sin30Rounded)) print("Sin45:{}".format(sin45Rounded)) print("Sin60:{}".format(sin60Rounded)) print("Sin90:{}".format(sin90Rounded)) |
Output:
Sin0:0.0 Sin30:0.5 Sin45:0.71 Sin60:0.87 Sin90:1.0 |